Electrochemically-Mediated Sorbent Regeneration in CO₂ Scrubbing Processes (FE0026489)

T. Alan Hatton

Ralph Landau Professor of Chemical Engineering Director, David H. Koch School of Chemical Engineering Practice Co-Director, MITEI Low Carbon Energy Center for CCUS

Massachusetts Institute of Technology, Cambridge MA 02139

Award Name: Electrochemically-Mediated Sorbent Regeneration in CO₂ Scrubbing Processes (FE0026489)

Funding:

DOE	\$1,202,052
□Cost Share	\$ 310,601
□Total	\$1,512,653

Project Period: August 1, 2017 – July 31, 2020

Project PIs: T. Alan Hatton, Howard Herzog DOE Project Manager: Ted McMahon

Overall Project Objectives: Develop, characterize and implement electrochemically mediated sorbent regeneration and CO₂ release in amine scrubbing processes

Benchmark CO₂ Capture Technology: Thermal Amine

Electrochemically Mediated Amine Regeneration (EMAR)

Electrochemically Mediated Amine Regeneration (EMAR)

EMAR Anatomy

- Selection Criteria
- Cost
- Electrochemical transition happens within the aqueous stability window
- Metal ion has sufficiently strong binding to displace CO₂ (amine specific!)
- Solubility
- Electrochemical kinetics

M.C. Stern, F. Simeon, H. Herzog, T.A. Hatton, *Energy and Environmental Science*. 2013

Thermodynamic Results

Thermodynamic Results

Anatomy of EMAR Cell

Scaling Up Electrochemical Systems

Experimental Demonstration of CO₂ Release

Liquid flow rate = 10mL/min

Process Automation

Series Geometry

Copper Loading Effect on Current Density

Copper Loading Effect on Current Density

- Change in the anodic reaction as CO₂ loading drops or increased advection (diminishing boundary layer resistance) caused by CO₂ production in the anode.
- Parasitic side reactions (especially in the cathode) (e.g.,. formation of CuO).

EMAR Advantages

Energy Consumption	15 – 40 kJ/mole
Low temperature Operation	Yes
Ease of Deployment	Plug-and-Play
High Pressure Desorption	Yes

Overpotentials for Electrochemical Reactions

In absence of CO_2 , formation of EDA complex does not significantly hinder Cu deposition and dissolution. EDA Stabilizes Cu^{2+} in solution

Overpotentials for Electrochemical Reactions

In presence of CO₂, kinetics are significantly hindered. However, chlorides were observed to improve performance significantly.

Effects of Supporting Electrolyte on Copper Reduction

28

Technical Risks	Probability	Impact	Risk Mitigation
CO ₂ sorbents and metal ion systems unsuccessful	Medium	Low	Wide range of candidate sorbents available. Initial results are promising
Electrochemical cell models low in fidelity and do not permit optimization	Moderate	Low	Complexity of underlying mechanisms in electrochemical cell presents risk for modeling. Parametric experiments will generate sufficient data for empirical optimization.
Process found to be too sensitive for long-term operations and disturbances	Moderate	Moderate	Preliminary testing is encouraging. Degradation of electrodes or sorbents possible, but can be mitigated through design of electrode configurations

Resource Risks	Probability	Impact	Risk Mitigation
Cost of bench-scale system after optimization more expensive than planned	Low	Low	Most of the components of the system have been procured and operated in previous work, but the optimized system might involve more expensive equipment, especially for automation.

Management Risks	Probability	Impact	Risk Mitigation
Process performance reaches a plateau that does not satisfy DOE research goals	Moderate	High	The progress reports will allow the project team to evaluate the performance of the process and determine whether it is possible to explore new dimensions for performance improvements.

Experimental Design and Work Plan

	1		Task	SubTask
Budget Period		2	Evaluate and Test CO ₂ Sorbents and Metal Ions for Electrochemical Regeneration	 Identify and Shortlist Candidate Molecules Thermodynamic and Kinetic Experiments on Candidate Molecules Cycling Stability Experiments on Candidate Molecules
			Process Modeling and Cost Estimation	Develop process model and evaluate pressure effectsDevelop cost estimates
	┛		Electrochemical Cell Model Development	Establish kinetics and mass transfer modelModel validation
		3	Flow Channel Design and Optimization	 Model-aided design of candidate flow channels Construction and testing of candidate flow channel configurations
			Optimization of Electrode Configuration and Cell Architecture	Evaluation of different electrode materialsEvaluation of cell architectures
			Evaluation of Optimized Chemistries and Cell Designs	 Design and build instrumented lab-scale apparatus Testing of candidate systems under wide operating conditions Stability testing

Acknowledgements

Aly Eltayeb

Ryan Shaw

Miao Wang

